toán 10 cánh diều trang 77 thành phố Bắc Ninh
Câu chuyện trò chơi: Thế giới trò chơi đam mê bất tận
Trong xã hội hiện đại của chúng ta,áncánhdiề trò chơi đã trở thành một phần không thể thiếu trong cuộc sống của nhiều người. Nó không chỉ mang đến cho chúng ta những giây phút giải trí, thư giãn mà còn có rất nhiều câu chuyện game khiến người ta phải suy ngẫm sâu sắc.
toán 10 cánh diều trang 77Giải SGK Toán 11 trang 77 Cánh Diều tập 1

Bài 1 trang 77 SGK Toán 11 tập 1 – Cánh DiềuDùng định nghĩa xét tính liên tục của hàm số (fleft( xight) = 2{x^3} + x + 1) tại điểm (x = 2.)Phương pháp:Hàm số (y = fleft( xight)) được gọi là liên tục toán 10 cánh diều trang 77 tại ({x_0}) nếu (mathop {lim}limits_{x o {x_0}} fleft( xight) = fleft( {{x_0}}ight))Lời giải:Hàm số (fleft( xight) = 2{x^3} + x + 1) xác định trên (mathbb{R}).Ta có: (begin{array}{l}mathop {lim}limits_{x o 2} fleft( xight) = mathop {lim}limits_{x o 2} left( {2{x^3} + x + 1}ight) = {2.2^3} + 2 + 1 = 17\fleft( 2ight) = {2.2^3} + 2 + 1 = 17\ Rightarrow mathop {lim}limits_{x o 2} fleft( xight) = fleft( 2ight)end{array})Do đó hàm số liên tục tại x = 2.Bài 2 trang 77 SGK Toán 11 tập 1 – Cánh DiềuTrong các hàm số có đồ thị ở Hình 15a, 15b, 15c, hàm số nào liên tục trên tập xác định của hàm số đó? Giải thích.Phương pháp:– Các hàm đa thức liên tục trên (mathbb{R})– Các hàm phân thức hữu tỉ liên tục trên từng khoảng xác định của chúng– Hàm số (y = fleft( xight)) được gọi là liên tục tại ({x_0}) nếu (mathop {lim}limits_{x o {x_0}} fleft( toán 10 cánh diều trang 77 xight) = fleft( {{x_0}}ight))Lời giải:Bài 3 trang 77 SGK Toán 11 tập 1 – Cánh DiềuBạn Nam cho rằng: “Nếu hàm số (y = fleft( xight)) liên tục tại điểm ({x_0},) còn hàm số (y = gleft( xight)) không liên tục tại ({x_0},) thì hàm số (y = fleft( xight) + gleft( xight)) không liên tục tại ({x_0})”. Theo em, ý kiến của bạn Nam đúng hay sai? Giải thích.Phương pháp:Hàm số (y = fleft( xight)) được gọi là liên tục tại ({x_0}) nếu (mathop {lim}limits_{x o {x_0}} fleft( xight) = fleft( {{x_0}}ight))Lời giải:Theo em ý kiến của bạn Nam là đúng.Ta có: Hàm số (y = fleft( xight)) liên tục tại điểm ({x_0}) nên (mathop {lim}limits_{x o {x_0}} fleft( xight) = fleft( {{x_0}}ight))Hàm số (y = gleft( xight)) không liên tục tại ({x_0}) nên (mathop {lim}limits_{x o {x_0}} gleft( xight)e gleft( {{x_0}}ight))Do đó (mathop {lim}limits_{x o {x_0}} left[ {fleft( xight) + gleft( xight)}ight] = mathop {lim}limits_{x o {x_0}} fleft( xight) + mathop {lim}limits_{x o {x_0}} gleft( xight)e fleft( {{x_0}}ight) + gleft( {{x_0}}ight))……
toán 10 cánh diều trang 77Giải bài tập Bài 2. Giải tam giác (C4 – Toán 10 Cánh diều)

Phương pháp giải Hướng dẫn giải a) Áp dụng định lí cosin trong tam giác ABC ta có:(A{B^2} = A{C^2} + B{C^2} – 2.AC.BC.cos C)(begin{array}{l} Leftrightarrow A{B^2} = {15^2} + {12^2} – 2.15.12.cos {120^o}\ Leftrightarrow A{B^2} = 549\ Leftrightarrow AB approx 23,43end{array})b) Áp dụng định lí sin trong tam giác ABC, ta có:(frac{{BC}}{{sin A}} = frac{{AB}}{{sin C}})( Rightarrow sin A = frac{{BC}}{{AB}}.sin C = frac{{12}}{{23,43}}.sin {120^o} approx 0,44)( Rightarrow widehat A approx {26^o}) hoặc (widehat A approx {154^o}) (Loại)Khi đó: (widehat B = {180^o} – ({26^o} + {120^o}) = {34^o})c)Diện tích tam giác ABC là: (S = frac{1}{2}CA.CB.sin C = frac{1}{2}.15.12.sin {120^o} = 45sqrt 3 ) Phương pháp giải Hướng dẫn giải Áp dụng định lí sin trong tam giác ABC ta có:(frac{{AB}}{{sin C}} = frac{{BC}}{{sin A}})( Rightarrow sin C = sin A.frac{{AB}}{{BC}} = sin {120^o}.frac{5}{7} = frac{{5sqrt 3}}{{14}})( Rightarrow widehat C approx 38,{2^o}) hoặc (widehat C approx 141,{8^o}) (Loại)Ta có: (widehat A = {120^o},widehat C = 38,{2^o})( Rightarrow widehat B = {180^o} – left( {{{120}^o} + 38,{2^o}}ight) = 21,{8^o})Áp dụng định lí cosin trong tam giác ABC ta có:(begin{array}{l}A{C^2} = A{B^2} + B{C^2} – 2.AB.BC.cos B\ Leftrightarrow A{C^2} = {5^2} + {7^2} – 2.5.7.cos 21,{8^o}\ Rightarrow A{C^2} approx 9\ Rightarrow AC = 3end{array})Vậy độ dài cạnh AC là 3. Phương pháp giải Hướng dẫn giải toán 10 cánh diều trang 77a)Ta có: (widehat A = {180^o} – (widehat B + widehat C)) ( Rightarrow widehat A = {180^o} – ({100^o} + {45^o}) = {35^o})Áp dụng định lí sin trong tam giác ABC ta có:(frac{{AB}}{{sin C}} = frac{{AC}}{{sin B}} = frac{{BC}}{{sin A}})( Rightarrow left{ begin{array}{l}AC = sin B.frac{{AB}}{{sin C}}\BC = sin A.frac{{AB}}{{sin C}}end{array}ight.)( Leftrightarrow left{ begin{array}{l}AC = sin {100^o}.frac{{100}}{{sin {{45}^o}}} approx 139,3\BC = sin {35^o}.frac{{100}}{{sin {{45}^o}}} approx 81,1end{array}ight.)b)Diện tích tam giác ABC là: (S = frac{1}{2}.BC.AC.sin C = frac{1}{2}.81,1.139,3.sin {45^o} approx 3994,2.) Phương pháp giải Hướng dẫn giải a) Áp dụng định lí cosin trong tam giác ABC, ta có: (cos A ……
toán 10 cánh diều trang 77Giải SBT Toán 10 trang 105, 106 Cánh Diều tập 1

Bài 57 trang 105 SBT Toán 10 – Cánh DiềuCho tam giác ABC. Giá trị của biểu thức (overrightarrow {BA} .overrightarrow {CA} ) bằng:A. AB. AC. cos(widehat {BAC}) B. – AB. AC. cos(widehat {BAC}) C. AB. AC. cos(widehat {ABC}) D. AB. AC. cos(widehat {ACB})Lời giải:Ta có: (overrightarrow {BA} .overrightarrow {CA} = left( { – overrightarrow {AB} }ight).left( { – overrightarrow {AC} }ight) = overrightarrow {AB} .overrightarrow {AC} = AB.AC.cos widehat {BAC})Chọn ABài 58 trang 105 SBT Toán 10 – Cánh DiềuCho tam giác ABC. Giá trị của biểu thức (overrightarrow {AB} .overrightarrow {BC} ) bằng:A. AB. BC. cos(widehat {ABC}) B. AB. AC. cos(widehat {ABC}) C. – AB. BC. cos(widehat {ABC})D. AB. BC. cos(widehat {BAC})Phương toán 10 cánh diều trang 77 pháp:Biến đổi (overrightarrow {AB} ) và (overrightarrow {BC} ) thành 2 vectơ chung gốc rồi sử dụng định nghĩa tích vô hướng của hai vectơLời giải:Đáp án đúng là ABài 59 trang 105 SBT Toán 10 – Cánh DiềuCho đoạn thẳng AB. Tập hợp các điểm M nằm trong mặt phẳng thoả mãn (overrightarrow {MA} .overrightarrow {MB} = 0)là:A. Đường tròn tâm A bán kính AB B. Đường tròn tâm B bán kính AB C. Đường trung trực của đoạn thẳng AB D. Đường tròn đường kính ABPhương pháp:Sử dụng tính chất (overrightarrow a .overrightarrow b = 0 Leftrightarrow left( {overrightarrow a ,overrightarrow b}ight) = {90^0}) để tìm vị trí điểm MLời giải:Đáp án đúng là DBài 60 trang 105 SBT Toán 10 – Cánh DiềuNếu hai điểm M, N thoả mãn (overrightarrow {MN} .overrightarrow {NM} = – 9) thì:A. MN = 9 B. MN = 3 C. MN = 81 D. MN = 6Lời giải:Theo giả thiết, (overrightarrow {MN} .overrightarrow {NM} = – 9 Leftrightarrow overrightarrow {MN} .overrightarrow {MN} = 9 Leftrightarrow {left( {overrightarrow {MN} }ight)^2} = 9 Leftrightarrow M{N^2} = 9 Leftrightarrow MN = 3) Chọn BBài 61 trang 105 SBT Toán 10 – Cánh DiềuCho tam giác ABC đều cạnh a. Các điểm M, N lần lượt thuộc các tia BC và CA thoả mãn (BM = frac{1}{3}BC,CN = frac{5}{4}CA). Tính:a) (overrightarrow {AB} .overrightarrow {AC}……